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Abstract: This paper presents a fuzzy model-based control algorithm for nonlinear 
interconnected cooperative adaptive cruise control system (CACCs). Firstly, a nonlinear 
model of the CACCs’ longitudinal movement is replaced by an equivalent Takagi-Sugeno 
type fuzzy model. Then, this paper designs a decentralized state feedback fuzzy controller 
to override the external disturbances such that the CACCs can achieve a good performance. 
Finally, the asymptotic stability and string stability of the nonlinear interconnected CACCs 
is guaranteed. The effectiveness of the proposed method is demonstrated by simulations. 

1. Introduction  

In recent years, urban traffic have been rapidly developed which caused a huge burden on the 
existing transportation system. In this respect, many researchers have devoted to develop the 
intelligent traffic systems [1], the goal is to find an effective way to reduce the traffic congestion. In 
the recent study, cooperative adaptive cruise control (CACC) was regarded as the most effective 
technology in the field of intelligent transportation system [2]. Unfortunately, the CACCs inevitably 
suffer from communication constraints, complex dynamics, and unknown interference from the 
outside world such as winds and roads [3, 4], thus, leading to a difficult to design effective control 
strategy. But, quite apart from that, vehicles in a CACC are dynamically coupled by controller 
structure, position and velocity of one vehicle may affect the others or even amplify as they 
propagate upstream along the CACCs and destroy the entire performance. 

Previous works pertaining to the CACC mainly about obtaining a controller and spacing scheme 
to adjust the speed of vehicles [5]. Generally speaking, two typical types of spacing schemes which 
are widely used in cooperative control of vehicles, such as, the constant-spacing scheme and the 
time headway spacing scheme. The constant time headway spacing scheme have successfully 
applied to adaptive cruise control (ACC) [6-7]. The constant-spacing scheme is widely used for 
autonomous platoon control, which we focus in this research.  

However, the existing controllers’ designs for CACC are at least a lack of two considerations. 
Firstly, a simple linear vehicle model was frequently used in [8], which is usually very difficult to 
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apply to practice, especially when considered with the effect of interconnected term. The combined 
interconnected is another aspect that may it may increase the difficulty of the design of the 
controller since interconnected term is the major factor in string unstable. The problem of 
interconnected has been researched by many scholars under different frameworks, such as in [9] the 
interconnected from the preceding vehicle was treat as an disturbance under which the string 
unstable can be avoided, and in [10] by utilizing inclusion principle to decoupling the 
interconnected term. However, these researches are derived based on a linearized vehicle dynamics 
model, which are not sufficient for achieving more stringent performance requirement for nonlinear 
CACCs. To the best of the authors’ knowledge, systematic analysis considerations the desired 
CACCs performance, interconnected dynamics are usually omitted.  

The paper is organized as follows. In Section II, a nonlinear CACC model is built. In Section III, 
a fuzzy model based controller design procedure is investigated for dealing with the nonlinearity 
interconnected term. The issue of string stability is also analyzed in this section. In Section IV, 
simulation examples are provided to demonstrate the design procedures. The concluding is made in 
Section V.  

2. Problem Formulation 

Consider a CACC system consisting of N vehicles running in a horizontal environment. Each 
vehicle transmits its acceleration to its follower via a wireless communication channel. The distance 
and relative velocity between two adjacent vehicles are measured by on-board sensors. 

2.1 CACCs modeling 

The spacing errors of the two consecutive vehicles are defined as:  

iiiii hvLzz −−−= −1δ , (1) 

where h  is the time gap, 1-iz  and iz  denote the position of two consecutive vehicles, iv  and iL  
denotes the velocity and  length of the vehicle.  

The dynamics of the ith following vehicle formulated as follows: 
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where m
id  is the mechanical drag, ii

e
i mF ς=  is the force produced by the vehicle’s engine, ii gm θsin  

denotes the component of the vehicle weight, and im  denotes the vehicle’s mass, g  denotes the 
acceleration of gravity, and iθ  denotes the angle between the road surface and a horizontal plane; 

w
iF specific the force due to the air resistance and defined as, 
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where s  denotes the specific mass of the air, iA  is the cross-sectional area, dic  is the drag 
coefficient, windv  is the velocity of the wind gust. ii

e
i mF ς=  is the engine force of vehicle i, and the 

engine dynamics satisfies [11], which can be model as  
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where it  denotes the vehicle’s engine time-constant, )(tui  denotes the throttle input to the 
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vehicle’s engine. 
According to [12], the angle iθ  which is correlated in time and expressed as  

)()()( twtt iii +−= αθθ  (5) 

where α  is the reciprocal of the time constant and )(twi  is random road induced vibrations for 
the ith vehicle. 

From (2) and (3), if the wind gust 0)( =tvwind  and the vehicle travels in the same direction at all 
time 1))()(sgn( =+ tvtv windi , we can get, 
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Substituting the expression for )(tiς  from (6) in the engine dynamics in (4), we obtain, 
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Differentiating both sides of (6) and substituting the expression for )(tiς  from (7) we get, 
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where diii cAK s= . By combining the dynamics of the vehicle (8) and (1), we derived the 
following state space equation for the ith vehicle in CACCs, 
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where T
iiiii avtx ][)( θδ=  ( 00 =z  in 1δ ) denotes the state of the system, )(tdi  denotes the 

disturbance. 
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)(00))(),(,( 11  denotes the nonlinear coupled term. 

A fuzzy CACCs dynamic model was proposed based on Takagi-Sugeno [13] to represent locally 
linear input/output relations for the nonlinear CACC system (2). We used fuzzy If-Then rules to 
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describe the fuzzy CACC model and applied it to deal with the problem of nonlinear interconnected 
CACCs. The jth rule of this fuzzy CACC model is proposed as, 

Plant Rule j: 
If )(1 tiθ  is )(1 tW j

i ,…, and )(tipθ  is )(tW j
ip , 

Then  

)()()()()( 1)1( tdtxAtuBtxAtx iijiiiijiiji +++= −−                      (10) 

for j=1,2,…,L where )(tW j
ip  is the fuzzy sets, L is the number of If-Then rules, the matrices ijA , 

ijB , jiiA )1( − and ijD  are of appropriate dimensions, and )(tdi  is the external disturbance for the ith 
vehicle. 

Denote T
ipiii tttt )](),...,(),([)( 21 θθθθ = is the premise variable. By using the center-average defuzzifier 

and product inference, the overall fuzzy CACC system (9) can be rearranged as the following form, 
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j

iq θ  is the grade of membership of )(tiqθ  in j
iqW  [14]. 

We assume 0))(( ≥tiij θµ , and 0))((1 >∑ =
L
j iij tθµ  for all 0>t . 

Therefore, we get  
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L
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Suppose the following fuzzy controller is employed to deal with the nonlinear CACC system 
(11), 

Control Rule s: 
If )(1 tiθ  is )(1 tW j

i ,…, and )(tipθ  is )(tW j
ip , 

Then )()( txKtu iisi =  
Hence, the fuzzy decentralized controller can be designed as  
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L
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Substituting (13) into (11) yields the closed-loop CACC system as following 
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2.2 The objective 

The objective of this research is to design a H∞ decentralized fuzzy model based method for the 
CACCs to meet the criterions as: 

1) Asymptotic stability: The spacing error and velocity error of each vehicle approach to zero 
when the CACCs moving with a constant velocity. 
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2) String stability: The oscillations are not amplifying with vehicle index caused by any 
maneuver of the lead vehicle. 

Besides the above stability criterions, the H∞ performance related to )(txi  requirement to be 
guaranteed as following, 

∫∫ ≤ ff t
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where iQ  is given positive definite symmetric matrices, ft  is the terminal time of control, ρ  is a 
prescribed attenuation level. 

Remark 1. Note that the meaning of (14) is the effect of any )(tdi  on )(txi must be attenuated 
below a desired level ρ  , i.e., the L2 gain from )(tdi  to )(txi must be equal to or less than a prescribed 
value 2ρ . The H∞ performance with a prescribed attenuation level is useful for a robust controller 
design without knowledge of )(tdi .. 

3. Fuzzy Model Based H∞ Controller Design 

Based on the model and preliminaries given in the above section, a sufficient condition is given 
for the CACCs to ensure that all the vehicles in the string are asymptotically stable with the effect 
of external disturbance. 

Our first result is given in the following theorem.  
Theorem 1. For the closed loop CACC system in (14), if 0>= T

ii PP  is a common solution of the 
following linear matrix inequality 
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for j, s=1,2,…,L, then the whole CACC system is stable. 
Proof. Let us define a Lyapunov function for the closed-loop CACC system (14) as, 
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By substituting (14) into (18) with di(t) =0, one can get 
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Inequality (19) implies that 0)( ≤tVi
 . Therefore the closed-loop CACC system (14) is 

asymptotically stable. This completes the proof. 
Note that in the above discussions, we ignore the effects of disturbance di(t), which may be the 

main causes of string instability and must be dealt with. The primary disturbances existing in a 
CACC system include the lead vehicle acceleration and wind gust. Here, we use di(t) to represent 
the combined equivalent disturbance in the CACCs. Then, we can reformulate the closed-loop 
CACCs in (14) as follows: 

Theorem 2. For the closed-loop CACCs in (11), if 0>= T
ii PP  is a common solution of the 

following linear matrix inequality 
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for j,s=1,2,…,L, then the whole CACC system is stable in the sense of Lyapunov if di(t)=0 and 
the H∞ performance in (15) is guaranteed for a prescribed 2ρ . 

Proof. It’s clear that (17) implies that 0
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According to Theorem 1, the stability of the whole interconnected nonlinear system is 
immediately followed. From (20), we obtain 

)()()0()0()()(
0 fiif

T
iii

T
i

t
ii

T
i txPtxxPxdttxQtxf −=∫  

∫ ++ ft
ii

T
iii

T
i dttxPtx

dt
dtxQtx

0
))}()(()()({  

∫ +++≤ ft
ii

T
iii

T
iii

T
iii

T
i dttxPtxtxPtxtxQtxxPx

0
)}()()()()()({)0()0(  ∑∑

= =
+=

L

j

L

s

i
kiisiijii

T
i hththxPx

1 1
))(())(()0()0( θθ  

[ ]∫ +++++ −−
ft T

iijiiiisijijii
T
i tdtxAtxKBAtxQtx

0 1)1( )()()()()()({  

[ ] dttdtxAtxKBAPtxtxP iijiiiisijiji
T
iii })()()()()()( 1)1( ++++ −− ∫∑∑
















+= −

= =

ft

T

i

i

iL

j

L

s

i
kiisiijii

T
i

td
tx

tx
hththxPx

0 1
1 1 )(

)(
)(

{))(())(()0()0( θθ  

















−

++++

× −

−

IP
PA

PAPQKBAPPKBA

i

i
T

jii

ijiiiiisijijii
T

isijij

2
)1(

)1(

0
00

)()(

ρ
 

dttdtd
td
tx

tx

i
T
i

i

i

i

})()(
)(
)(

)(
2

1 ρ+















× −  (21) 

319



According to (20), we get 
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Therefore, the H∞ control performance is achieved with a prescribed 2ρ . This completes the 
proof. 

4. Simulation 

In order to demonstrate the effectiveness of the proposed control method, we apply the proposed 
controller to CACCs which consists of one leader and two following vehicles, and runs in a virtual 
environment established by MATLAB. In the simulations, the parameters of the desired spacing is 

1=dδ m and the length of the vehicle set to be m2=iL , the time gap constant are chosen as h=0.8. 
The other parameters as follows: 31 sm=s , 22.2 mAi =  , 35.0=dic  , kgmi 1500= , si 2.0=t , 5.0=α  and 

5=id .  
The design procedure of the fuzzy state feedback controller for CACCs is given as follows: 
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Fig.1. Profile of the lead vehicle              
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Fig.2. Spacing errors 

Step 1. To use the proposed fuzzy control method, we describe the interconnected CACCs by a 
fuzzy model. To simplify the design difficulty and complexity, we use as few rules as possible. 
Therefore, we approximate the CACCs by the following three-rule fuzzy model. 

Rule 1  IF ii etx )(  is about 0, then 

)()()()()( 11)1(11 tdtxAtuBtxAtx iiiiiiiii +++= −−  

Rule 2  IF ii etx )(  is about -0.5, then 

)()()()()( 12)1(22 tdtxAtuBtxAtx iiiiiiiii +++= −−  
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Rule 3  IF ii etx )(  is about 0.5, then 

)()()()()( 13)1(33 tdtxAtuBtxAtx iiiiiiiii +++= −−  

where ie , ijA , ijB  and jiiA )1( −  are listed as follows 
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Step 2. To solve (20) by using LMI toolbox in Matlab. 
Step 3. The control gains Kis are the following: ]8065.35072.10156.84210.3[1 =iK ,  

]8135.35152.10365.85620.3[2 =iK ,  

]8185.35235.10235.84655.3[3 =iK .  

0 10 20 30 40 50
0

2

4

6

8

10

12

14
velocities

t(s)

v(
m

/s
)

 

 
v0
v1
v2
v3

 
Fig.3. Velocities   
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Fig.4. Accelerations.  

By using the aforementioned parameters for the CACCs, Fig. 2 and 3 was obtained, which show 
the maximum absolute spacing error and velocity are 1 m and 14 m/s, respectively, meaning the 
whole CACC system tracking accurately. Therefore, the simulation results demonstrate that the 
proposed H∞ controller could guarantee the robust asymptotic stability of the fuzzy model CACC 
model in the event of external disturbances. 

5. Conclusion 

In this research, a Takagi-Sugeno fuzzy model is proposed to study the CACC system control for 
interconnected nonlinearity vehicle dynamics using fuzzy model based H∞ control. The proposed 
controller can override the effect of external disturbance such that the asymptotic stability and string 
stability can be achieved at the same time. Simulations are given to illustrate the design procedure 
and shown that the proposed controller can achieve good performance. 
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